
EUROGRAPHICS 2007 / D. Cohen-Or and P. Slavík
(Guest Editors)

Volume 26 (2007), Number 3

Stackless KD-Tree Traversal for
High Performance GPU Ray Tracing

Stefan Popov† Johannes Günther‡ Hans-Peter Seidel‡ Philipp Slusallek†

†Saarland University, Saarbrücken, Germany
‡MPI Informatik, Saarbrücken, Germany

Figure 1: Our test scenes, from left to right: BUNNY, FAIRYFOREST, GLASSSHIRLEY6, and CONFERENCE. Our novel GPU
ray tracer can render them at 18.7, 10.3, 8, and 19.6 fps, respectively, at a resolution of 512 × 512. We support ray traced
shadows from point lights and soft shadows from area light sources (9 samples / pixel), reflections, and refractions.

Abstract
Significant advances have been achieved for realtime ray tracing recently, but realtime performance for complex
scenes still requires large computational resources not yet available from the CPUs in standard PCs. Incidentally,
most of these PCs also contain modern GPUs that do offer much larger raw compute power. However, limitations
in the programming and memory model have so far kept the performance of GPU ray tracers well below that of
their CPU counterparts.
In this paper we present a novel packet ray traversal implementation that completely eliminates the need for
maintaining a stack during kd-tree traversal and that reduces the number of traversal steps per ray. While CPUs
benefit moderately from the stackless approach, it improves GPU performance significantly. We achieve a peak
performance of over 16 million rays per second for reasonably complex scenes, including complex shading and
secondary rays. Several examples show that with this new technique GPUs can actually outperform equivalent
CPU based ray tracers.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Ray tracing I.3.6 [Com-
puter Graphics]: Graphics data structures and data types

1. Introduction

Ray tracing is well known for its advantages in high qual-
ity image generation and lighting simulation tasks. The re-
cent development of highly optimized realtime ray tracing

† {popov,slusallek}@cs.uni-sb.de
‡ {guenther,hpseidel}@mpi-inf.mpg.de

algorithms makes this technique an interesting alternative
to rasterization. While CPU performance has increased dra-
matically over the last few years, it is still insufficient for
many ray tracing applications. Existing deployments in in-
dustry, such as several large visualization centers, are typi-
cally based on CPU clusters to achieve the necessary perfor-
mance.

© The Eurographics Association and Blackwell Publishing 2007. Published by Blackwell
Publishing, 9600 Garsington Road, Oxford OX4 2DQ, UK and 350 Main Street, Malden,
MA 02148, USA.

S. Popov, J. Günther, H.-P. Seidel, and P. Slusallek / Stackless KD-Tree Traversal for High Performance GPU Ray Tracing

Increasingly, realtime ray tracing is being discussed also
for gaming platforms, e.g. [FGD∗06]. These systems al-
ready have one or more modern GPUs that offer significantly
higher raw compute power than CPUs due to their highly
parallel architecture. This also makes them a very attractive
compute platform for ray tracing.

However, today’s efficient ray tracers are based on hier-
archical acceleration structures (typically kd-trees) and cor-
responding stack-based traversal algorithms. Unfortunately,
even the latest GPU architectures are poorly suited for im-
plementing such algorithms.

To remove these limitations we present three main con-
tributions in this paper: (1) We review and adapt an effi-
cient, stackless ray traversal algorithm for kd-trees [HBŽ98].
(2) Based on this algorithm we present a novel, stackless
packet traversal algorithm that supports arbitrary ray bun-
dles and can handle complex ray configurations efficiently.
(3) We present a GPU implementation of these algorithms
that achieves higher performance than comparable CPU ray
tracers. The GPU implementation uses the Compute Unified
Device Architecture (CUDA) framework [NVI] to compile
and run directly on the latest generation of GPUs.

2. Previous Work

Currently, the best known acceleration structure for ray trac-
ing of static scenes remains the kd-tree [Hav01] built accord-
ing to the surface area heuristic (SAH) [MB89]. In practice
the recursive ray segment traversal algorithm [HKBŽ97] is
widely used due to its high efficiency. In order to increase
memory coherence and save per-ray computations, this algo-
rithm has been extended to also support tracing of entire ray
packets using the SIMD features of modern CPUs [Wal04]
or even to larger groups of rays with the help of frustum
traversal [RSH05, Ben06]. These algorithms also form the
basis for custom ray tracing chips, like the RPU [WSS05]
and its dynamic scene variant D-RPU [WMS06].

2.1. Ray Tracing on GPUs

The first step toward GPU ray tracing was made in 2002
with the Ray Engine [CHH02]. It implemented only the ray-
triangle intersection on the GPU while streaming geometry
from the CPU. This division of labor resulted in high com-
munication costs, which greatly limited performance.

In the same year Purcell et al. [PBMH02] showed through
hardware simulation that it is possible to overcome this lim-
itation by moving essentially all computations of ray tracing
onto the GPU. The GPU was treated as a stream processor
and each of the different tasks – primary ray generation, ac-
celeration structure traversal, triangle intersection, shading,
and secondary ray generation – were implemented as sepa-
rate streaming kernels. Due to the difficulty of implementing
efficient kd-trees they chose a simple regular grid as their ac-
celeration structure.

Later a concrete implementation on a GPU was able
to achieve a performance of roughly 125k rays/s for non-
trivial scenes [Pur04]. Its main bottlenecks were the sub-
optimal acceleration structure as well as the high band-
width requirements. This basic approach to ray tracing on
the GPU was the base for several other implementations, in-
cluding [Chr05, Kar04].

Carr et al. implemented a limited ray tracer on the GPU
that was based on geometry images [CHCH06]. It can only
support a single triangle mesh without sharp edges, which
is difficult to create from typical models. The acceleration
structure they used was a predefined bounding volume hier-
archy. Due to the limited model support comparing perfor-
mance is difficult, but for reasonable model sizes it is not
much higher than the above approaches.

The high computation power of the GPU was also uti-
lized to implement ray casting of piecewise quadratic sur-
faces [SGS06] and NURBS [PSS∗06]. However, these pa-
pers do not use an acceleration structure.

2.2. KD-Tree Traversal on the GPU

For static scenes, kd-trees are regarded as the most effi-
cient acceleration structure. Therefore, several attempts ex-
ist to implement kd-trees on the GPU. In 2004 Ernst et
al. [EVG04] showed an implementation of a (parallel) stack
for kd-tree traversal on the GPU using several kernels exe-
cuted in a multi-pass fashion. Frequent kernel switches in-
troduced a high overhead and huge memory bandwidth re-
quirements for storing intermediate results. Thus, the result-
ing frame rates were much too low for interactive ray tracing
even for small scenes. Additionally, the parallel stack con-
sumed large amounts of memory.

One year later, Foley and Sugerman [FS05] presented two
implementations of stackless kd-tree traversal algorithms for
the GPU, namely kd-restart [Kap85] and kd-backtrack. Both
algorithms clearly outperformed regular grids on the GPU.
However, despite the high GPU compute power and despite
the efficient acceleration structure, they were still not able
to outperform the CPU implementations, achieving a peak
performance of around 300k rays/s for reasonably complex
scenes. One reason for the relative low performance is the
high number of redundant traversal steps.

Concurrently to our work, Horn et al. [HSHH07] have
independently developed an interactive GPU ray tracer
achieving similar high performance with 15–18M rays/s. By
adding a short stack to the kd-restart algorithm they avoid
some but not all of the redundant traversal steps.

For bounding volume hierarchies Thrane and Simon-
sen [TS05] showed that stackless traversal allows for effi-
cient GPU implementations. They outperformed both reg-
ular grids and the kd-restart and kd-backtrack variants for
kd-trees. However, performance was still fairly limited, to a
large degree due to bandwidth limitations of the algorithm.

© The Eurographics Association and Blackwell Publishing 2007.

S. Popov, J. Günther, H.-P. Seidel, and P. Slusallek / Stackless KD-Tree Traversal for High Performance GPU Ray Tracing

2

6

4

1 3

5

1 2 3

6

4 5

Figure 2: A kd-tree with “ropes”. Ropes link each leaf node
of the kd-tree via its six faces directly to the corresponding
adjacent node of that face or to the smallest node enclosing
all adjacent nodes if there are multiple.

3. Efficient Stackless KD-Tree Traversal

As demonstrated above, implementing an efficient ray tracer
on the GPU that takes full advantage of its raw processing
power is challenging. In particular, an efficient implemen-
tation needs to be based on a stackless design to avoid the
issues discussed above. While latest GPUs would allow for
a stack to be implemented in a fast but small on-chip mem-
ory (a.k.a. shared memory on the NVIDIA G80 architec-
ture), the memory requirements of such an implementation
would most likely prohibit good parallelism. A viable stack-
less algorithm should outperform existing algorithms, and
should be simple and small enough to comfortably be imple-
mented in a single GPU kernel in order to avoid bandwidth
and switching overhead of multi-pass implementations. Ad-
ditionally, register usage should be minimized such that op-
timal parallelism can be achieved on the latest GPUs.

We base our approach of high performance GPU ray
tracing on seemingly little noticed previous publications on
stackless traversal of spatial subdivision trees, which use the
concept of neighbor cell links [Sam84, Sam89, MB89], or
ropes [HBŽ98]. In the following, we first discuss the kd-tree
with ropes as the basis for a single ray traversal algorithm.
Later, we present our new extension that efficiently supports
the stackless traversal of kd-trees with packets of rays.

3.1. Single Ray Stackless KD-Tree Traversal

The main goal of any traversal algorithm is the efficient
front-to-back enumeration of all leaf nodes pierced by a ray.
From that point of view, any traversal of inner nodes of the
tree (also called “down traversal”) can be considered over-
head that is only necessary to locate leafs quickly.

Kd-trees with ropes augment the leaf nodes with links,
such that a direct traversal to adjacent nodes is possible: For
each face of a leaf cell they store a pointer to the adjacent
leaf, or, in case there is more than one adjacent leaf overlap-
ping that face, to the smallest node containing all adjacent

Algorithm 1: Single Ray Stackless KD-Tree Traversal

1: R = (O,D) . The ray
2: N← the root node . N ≡ current traversed node
3: λentry← Entry distance of R in the tree
4: λexit ← Exit distance of R in the tree

5: while λentry < λexit do
6: . Down traversal
7: Pentry← O+λentry ·D
8: while ¬ is-leaf(N) do

9: N←
{

Nleft-child , if Pentry on left of split
Nright-child , else

10: end while

11: . At a leaf
12: . Check for intersection with contained triangles
13: for all T ∈ Ntriangles do
14: I = intersect-in-range(R, T, λentry, λexit)
15: if intersection-found(I) then
16: Update the current best result
17: λexit ← intersection-distance(I)
18: end if
19: end for
20: . Exit the leaf.
21: λentry← exit-distance(R, AABB(N))
22: N← exit-rope(R, N)
23: return no-intersection, if N ≡ nil
24: end while

25: return Best found result

leafs (see Figure 2). Faces that do not have adjacent nodes
lie on the border of the scene and point to a special nil node.

Single ray traversal of rope trees works as follows (see
Algorithm 1). Suppose the traversal currently processes a
leaf node. If the ray does not intersect anything in this leaf
the algorithm determines the face and the intersection point
through which the ray exits the node. Then traversal contin-
ues by following the “rope” of this face to the adjacent node.
If that node is not itself a leaf node, the algorithm performs
a down traversal to locate the leaf node that contains the exit
point (which is now the entry point of the new leaf node). If
the rope points to the nil node, the ray is terminated.

Adding ropes to any kd-tree is fairly simple and can be
done in a post processing step (Algorithm 2). First, nil ropes
are created for all faces of the root node. During kd-tree con-
struction, the ropes of a node are copied to the respective
outer faces of its children and the children are then connected
to each other as there is a 1-to-1 adjacency across the shared
face. Every time the post processing algorithm visits a node,
it tries to push it’s ropes down the tree as much as possible:
Assume we are at a node N with a rope pointing to node R
for some side s of N. R is replaced with it’s right child RR if

© The Eurographics Association and Blackwell Publishing 2007.

S. Popov, J. Günther, H.-P. Seidel, and P. Slusallek / Stackless KD-Tree Traversal for High Performance GPU Ray Tracing

RL

L1

RR

L2

L3

L1

L2

L3

RR

Figure 3: Left: Un-optimized ropes. The rope for the right
face of L1 links to the root of the subtree adjacent to L1 from
the left. Right: Optimized ropes. The right face points to the
deepest node that contains all leafs adjacent to L1 on the
right.

the split axis of R is parallel to s and s ∈ {le f t, top, f ront},
or if the split plane of R is above, to the left or in front of
the bounding box of N. Symmetrical rules apply for R and
RL. We refer to that last part of the algorithm as rope opti-
mization. It can be proven that the presented algorithm runs
in O(N), with N being the number of nodes in the tree.

Note that kd-tree traversal would still work correctly if the
ropes are not pushed down upon visiting a node. The traver-
sal steps in this case would actually match the ones taken
in a recursive segment traversal. Also, the resulting ropes in
this case point to the root of the neighboring subtrees – an
important property used by the packet traversal algorithm as
explained below. Thus, for packet traversal, we do not push
the nodes down during construction. We will refer to ropes
constructed in this manner as “non-optimized”.

3.2. Stackless Traversal for SIMD Packets of Rays

The SIMD nature of GPUs suggested the design of a
stackless packet traversal algorithm. This new algorithm
corresponds to the stack-based packet algorithm used for
CPUs by Wald et al. [WSBW01] and later extended by
Reshetov [Res06] for incoherent rays. The use of packets
reduces off-chip bandwidth, avoids memory fetch latencies,
and eliminates incoherent branches on the GPU [Hou06] by
exploiting ray coherence whenever present.

The packet traversal algorithm is an extension of the sin-
gle ray variant. It operates on one node at a time and only
processes rays of the packet that intersect the current node.
For efficiency reasons, it requires non-optimized ropes.

In a recursive traversal some rays in a packet might be-
come inactive because they do not overlap with a child node.
Such rays are again activated when the recursion returns to
the parent node. To make stackless traversal of packets ef-
ficient, we apply a similar regrouping mechanism by using
non-optimized ropes. For a node N, all leafs in its left child
NL adjacent to the split plane of N will link to NR (the right

Algorithm 2: Rope Construction

1: procedure OPTIMIZE(R, S, AABB)
. R≡ the rope, passed by reference

2: while R is not leaf do
3: R← RL or RR based on S, if split-axis(R) || S
4: R← RR if split-plane(R) above AABBmin
5: R← RL if split-plane(R) below AABBmax
6: brake, else
7: end while
8: end procedure

9: procedure PROCESSNODE(N,RS,AABB)
. N ≡ current node, RS≡ ropes of N

10: if is-leaf(N) then
11: Nropes← RS
12: Nbounding-box← AABB
13: else
14: if single ray case then
15: S←{le f t,right, top,bottom, f ront,back}
16: OPTIMIZE(RS[s], s, AABB), ∀s ∈ S
17: end if

18: (SL,SR)←

(le f t,right) , if Nsplit-axis = X
(f ront,back) , if Nsplit-axis = Y
(top,bottom) , if Nsplit-axis = Z

19: V ← Nsplit-plane-position

20: RSle f t ← RS, RSle f t [SR]← NR
21: AABBle f t ← AABB, AABBle f t [SR]←V
22: PROCESSNODE(NL, RSle f t , AABBle f t)

23: RSright ← RS, RSright [SL]← NL
24: AABBright ← AABB, AABBright [SL]←V
25: PROCESSNODE(NR, RSright , AABBright)
26: end if
27: end procedure
28:
29: PROCESSNODE(root-node, {nil, ...nil︸ ︷︷ ︸

6

}, AABB)

child). Thus, all rays exiting leafs in NL through the split
plane of N will be collected again in NR

In order to implement the corresponding traversal algo-
rithm, each ray of a packet maintains a separate state. For
a ray R, this state consists of the currently traversed node
Ncurrent and the entry point Pentry of R into Ncurrent . The
packet algorithm operates on one node Ntraversed at a time
by processing all rays of the packet against it. However, only
rays that are currently in Ntraversed (i.e. where Ntraversed ≡
Ncurrent) participate in the computations. We name such rays
active rays.

A down traversal step proceeds as follows: First, the cur-
rent node of all active rays is advanced to either the left (NL)

© The Eurographics Association and Blackwell Publishing 2007.

S. Popov, J. Günther, H.-P. Seidel, and P. Slusallek / Stackless KD-Tree Traversal for High Performance GPU Ray Tracing

Algorithm 3: PRAM Stackless Packet Traversal of KD-
Trees

1: function FINDINTERSECTION(ray, tree)
2: return No intersection, if ray ∩ AABB(tree) = ∅
3: (λentry,λexit)← ray ∩ AABB(tree)
4: Pentry↔ λentry
5: Ncurrent ← Root(tree)
6: loop
7: Ncurrent ← nil, if λentry ≥ λexit
8: Ntraversed : shared← arg P_MAX(&Ncurrent)
9: break, if Ntraversed ≡ nil

10: loop . The down traversal
11: break, if IsLea f (Ntraversed)
12: if Ncurrent = Ntraversed then
13: (NL,NR)←Children(Ntraversed)
14: on-left← Pentry is left of split

15: Ncurrent ←
{

NL , if on-left
NR , else

16: end if
17: axis← SplitAxis(Ncurrent)
18: b← Pentry on left of split
19: b1← P_OR (active∧ b ∧ rayd [axis] > 0)
20: b2←¬P_OR (active∧¬b)
21: b3← P_SUM (Pentry on left ? −1 : 1) < 0

22: Ntraversed ←
{

NL , if b1∨b2∨b3
NR , else

23: end loop
. The exit step

24: Intersect ray with contained geometry
25: if Ncurrent = Ntraversed then
26: Update Pentry and Ncurrent as with single ray
27: end if
28: end loop
29: return Best found intersection
30: end function

or right (NR) child of Ntraversed , depending on whether its en-
try point is to the left or right of the split plane respectively.
Next, Ntraversed is advanced to either NL or NR, according to
the following rules (see also Figure 4):

• If the entry point of all active rays lies on the same side of
the split plane, we choose that node.
• If the directions of all active rays that have their entry

point in child node A point toward the other child B with
respect to the splitting dimension, we choose A and vice
versa.
• Otherwise, we choose the node containing more entry

points.

In case of the first two rules we are handling a coherent
set of active rays and can guarantee optimal traversal (for a
proof see Appendix A). If a coherent packet is split at some
point, it will join again later as shown in Figure 4. In case

NL NR

R
2

R1Pentry

P
entry

NL NR

R
2

R1Pentry

P
entry

R3

Pentry

NL NRR1
Pentry

R
3

PentryR2
Pentry

Figure 4: Top: All rays have an entry point in the left child,
so we take it as the next node in the down traversal. Mid-
dle: All rays with entry points on the left have positive di-
rection along the split axis. We descend into the left child, so
rays can rejoin in the right. Bottom: It is unclear which node
should be processed first, so we take the one that contains
more ray entry points. Thus, we increase the chance that we
do not have to revisit it later.

of the third rule we have to handle an incoherent case. We
choose the larger packet first, hoping that the other group
of rays terminates before we have to traverse the initially
chosen node again.

Down traversal stops once we reach a leaf, where we inter-
sect all active rays with its geometry. Ncurrent of any active
ray that terminates in this leaf is set to nil. Unless all rays
have terminated, we can never traverse to nil with the packet
(see below). Thus, terminated rays can never become active
again. As in the single ray case, we determine the exit point
and exit node for each active ray by intersecting it with the
axis-aligned bounding box of the leaf and by following the
rope of the exit face. This defines the new entry points Pentry
and new current nodes Ncurrent for all active rays.

We now have to perform a horizontal (or up) traversal
step. In general, the active rays will not all leave through
the same face and we need to choose the next node to be
processed Ntraversed . Obviously, we need to choose from the
set S of current nodes of all non-terminated rays (Ncurrent 6=
nil). If S = ∅, we can immediately terminate the traversal for
the whole packet.

Otherwise, we can choose any node from S different from
nil and still obtain correct traversal behavior. To choose the
optimal node, we rely on a property of the construction algo-
rithm: the tree is constructed in depth first order and the two
children of a node are stored sequentially in memory. Thus,
nodes deeper in the tree are at higher memory addresses than
their parents. Choosing the node corresponding to the largest
memory address guarantees us (see Appendix A) that once
we enter a node N with a set of active rays A, we will only
process nodes from the subtree of N, until all rays in A exit
N. As a consequence, coherent rays will be rejoined the same
way as in recursive traversal.

© The Eurographics Association and Blackwell Publishing 2007.

S. Popov, J. Günther, H.-P. Seidel, and P. Slusallek / Stackless KD-Tree Traversal for High Performance GPU Ray Tracing

Having chosen the next Ntraversed , we proceed with down
traversal again unless the node already is a leaf node. To
simplify the termination criteria, we give nil an address in
memory that is smaller than the address of the root of the
tree and thus we can skip the check of whether S is empty.
A packet terminates exactly when it traverses to the special
node nil.

The algorithm was designed for the latest GPU architec-
ture and we use the PRAM programming model for a Con-
current Read Concurrent Write (CRCW) machine [FW78]
to describe it (see Algorithm 3). As we will see (Section 4),
this model is very close to the actual hardware implemen-
tation of the latest GPUs. In the algorithm, we make use
of standard PRAM reduction techniques (Algorithm 4) to
perform parallel OR, parallel SUM, and parallel MAX. The
parallel OR returns the disjunction of a given condition over
all processors of the PRAM machine and runs in O(1). The
other two reduction operations return the sum respectively
the maximum of a given value over the processors and run
in O(logP), with P being the number of processors.

Algorithm 4: Standard PRAM reduction algorithms

1: function P_OR(condition)
2: sharedCondition : shared← false
3: sharedCondition← true, if condition
4: return sharedCondition
5: end function

6: function P_REDUCE(value, op)
. op≡ the reduction operator

7: m[] : shared . Shared memory for reduction
8: m[processorID]← value
9: for i = 0 .. log2 (#processors)−1 do

10: a1← 2i+1 processorID , a2← a1 +2i

11: m[a1] = op(m[a1], m[a2]) , if a2 < #processors
12: end for
13: return m[0]
14: end function
15: P_MAX(value) ≡ P_REDUCE(value, max)
16: P_SUM(value) ≡ P_REDUCE(value, +)

4. GPU Implementation

We implemented two variants of the ray tracing algorithm:
One based on single ray kd-tree traversal and one based on
packet traversal. Both variants were implemented on top of
CUDA [NVI] and as a proof of concept we implemented
the single ray variant on top of DirectX 9. The CUDA im-
plementations have the entire ray tracing routine in a single
kernel, whereas the kernels of the DX9 implementation are
ray generation, ray-scene intersection, and shading. The im-
plementation of the single ray traversal follows Algorithm 1
literally. Before discussing the implementation of the packet

Treelet

N2 N3

N4 N5 N6 N7

N1

N2 N3 N4 N5 N6 N7

Memory representation

Figure 5: Organization of kd-tree nodes into tree-lets in
memory allows for higher memory coherence.

traversal algorithm, we will have a closer look at the hard-
ware architecture of the GPU used for the implementation –
an NVIDIA GeForce 8800 GTX (G80).

The G80 is a highly parallel processor working on many
threads simultaneously. The threads are scalar programs and
the GPU processes them in SIMD groups – a.k.a. chunks
or warps. It possesses multiple independent cores, each of
which can process a single chunk at a given moment of time.
Once a chunk is assigned to a core, it stays there until it
terminates. Each core runs a number of chunks in a multi-
threaded fashion and switches among them to hide various
types of latencies. Additionally each core has a small amount
of on-chip memory that is shared between the threads it runs
and that can be used for inter-thread communication. Its size
is small and the number of chunks that can be run on a single
core in a multi-threaded manner is limited by the amount
of shared memory each chunk uses. Thus, implementing a
per-ray stack for kd-tree traversal using the shared memory
would still be infeasible.

Because the threads are executed in SIMD manner and are
thus implicitly synchronized within a chunk, one can look
at each core of the GPU, together with its shared memory,
as a PRAM CRCW machine, given that the threads make
uniform branch decisions. Thus, we can directly implement
Algorithm 3 on the GPU.

Since cache support was not exposed in CUDA at the time
of writing, we implemented read-ahead to shared memory
to reduce the number of round trips to off-chip memory in
the packet traversal. A block of data is read simultaneously
by all threads of a chunk, by reading consecutive addresses
in consecutive threads (base address + thread ID in chunk).
In this case, the memory controller can make a single large
request to off-chip memory, whose latency is hidden by the
GPU with calculations from other threads. We always read
blocks of size equal to the chunk size of the GPU.

We also reorganize the storage of the tree to benefit further
from the read-ahead. First, we store the geometry data in a
leaf together with its AABB and its ropes, to increase the
chance of having the data in shared memory at the beginning
of a leaf exit step. Second, we store the non-leaf nodes in
tree-lets similar to [Hav97]. A tree-let is a subtree of fixed
depth with nodes stored together in memory (see Figure 5).

© The Eurographics Association and Blackwell Publishing 2007.

S. Popov, J. Günther, H.-P. Seidel, and P. Slusallek / Stackless KD-Tree Traversal for High Performance GPU Ray Tracing

kd-tree properties
scene #tris #leaves #empty leaves references size size with ropes rope overhead
SHIRLEY6 804 3,923 1,021 1.86 82.4kB 266.3kB 3.23
BUNNY 69,451 349,833 183,853 2.53 6.9MB 23.0MB 3.30
FAIRYFOREST 174,117 721,083 382,345 3.01 14.9MB 47.9MB 3.22
CONFERENCE 282,641 1,249,748 515,970 3.13 27.8MB 85.0MB 3.06

Table 1: Used test scenes together with statistical data of the SAH kd-tree (“references” means the average number of references
to triangles per non-empty leaf). Enriching the kd-tree with ropes for stackless traversal increases its size about 3 times.

algorithm ray segment kd-restart single ray stackless packet stackless
scene down pops down restarts down down, ENS down, opt exits down exits
SHIRLEY6 17.5 3.64 30.9 3.64 17.5 11.5 6.23 3.64 12.0 3.64
BUNNY 24.3 4.82 81.0 4.94 24.5 24.5 20.9 4.94 31.0 7.57
FAIRYFOREST 38.9 7.97 105 7.97 39.0 33.0 25.3 7.97 39.9 10.6
CONFERENCE 33.2 6.64 82.9 6.64 33.2 22.2 13.0 6.64 25.6 7.71

Table 2: Number of steps for the different kd-tree traversal algorithms: “down” traversal steps and “pops”/“restarts”/“exits”
denoting the number of up traversal steps. “ENS” stands for entry node search and “opt” – for rope optimization. All numbers
are given averaged per ray.

Thus, because of the read-ahead optimization, accessing the
root of a tree-let in a down traversal, will also bring in the
nodes that will be accessed in the next few down traversal
steps, saving bandwidth and round-trips to off-chip memory.
Even though we change the memory layout of the tree, the
proofs in Appendix A still hold, because the root of every
sub-tree as well as its sibling still have a smaller address in
memory than any nodes in their subtrees.

An important feature of the implementation of the traver-
sal algorithm is that it is transparent to the shader. The shader
is written for single ray traversal and the traversal invocation
is the same for both packets of rays and single rays. Packets
are then formed implicitly by the graphics hardware.

5. Results and Discussion

To evaluate the proposed stackless traversal algorithms we
implemented them not only on the GPU but also on the
CPU as a reference. For testing purposes we used an
AMD 2.6GHz Opteron workstation and another worksta-
tion equipped with a NVIDIA GeForce 8800 GTX graph-
ics card. We tested our implementations using a variety of
scenes, ranging from simple to reasonably complex, namely
the original SHIRLEY6, BUNNY, FAIRYFOREST, and CON-
FERENCE. The scenes and the viewpoints for the tests can
be seen on Figure 1. More statistical data for the scenes is
available in Table 1.

5.1. Memory Requirements

The main disadvantage of stackless traversal seems to be the
increased storage requirements for the ropes and the bound-
ing boxes of the leafs.

Assuming a compact representation with 8 bytes per
node [Wal04], the kd-tree with ropes can not be more than a
factor of 4 larger. To show this, we take the ratio of the size
Snormal of a kd-tree without ropes to the size Sropes of a kd
tree with ropes:

1≤ Sropes

Snormal
=

48N +8(2N−1)+4∑ri

8(2N−1)+4∑ri
< 4 for ∑ri > 2

N is the number of leafs and ri is the number of triangles
referenced by leaf i. We assume that we need 4 bytes per
reference. The first term in Sropes is the overhead of the rope
storage.

In practice we encountered a ratio of about 3 (see Table 1).
Although this factor seems high in relation to the kd-tree
alone, this disregards all the other data, such as precomputed
data for fast triangle intersections, vertex attributes such as
normals, texture coordinates, etc., the textures themselves,
and any other scene data. Thus, the memory overhead of
storing the ropes is often reasonable in comparison to the
overall memory requirements.

5.2. Traversal Steps

Single ray stackless traversal has an important advantage:
No stack is required to remember nodes that still need to be
visited. Instead the state of the ray only consists of its current
node and its entry point. Thus, the traversal can start at any
node containing the origin of the ray. More important, it can
start directly at a leaf.

For single rays with common origin inside the tree (as in
the case of a pinhole camera), we can drastically reduce the
number of down traversal steps. Instead of traversing from
the root down to a leaf for every ray, we can directly start at

© The Eurographics Association and Blackwell Publishing 2007.

S. Popov, J. Günther, H.-P. Seidel, and P. Slusallek / Stackless KD-Tree Traversal for High Performance GPU Ray Tracing

OpenRT CPU: Stackless GPU: Stackless
scene primary rays primary rays only primary rays only with 2ndary rays

frustum single packet single packet single packet
SHIRLEY6 6.6 3.80 3.49 10.6 36.0 4.8 12.7
BUNNY — 2.16 1.71 8.9 12.7 4.9 5.9
FAIRYFOREST 3.6 1.57 1.27 5.0 10.6 2.5 4.0
CONFERENCE 3.9 2.14 1.78 6.1 16.7 2.7 6.7

Table 3: Absolute performance for single ray and packet stackless traversal, implemented on the CPU (Opteron@2.6GHz, 4×4
rays/packet) and the GPU (GeForce 8800 GTX, 8×4 rays/packet). Performance is given in frames per second at 1024×1024,
including shading. For secondary rays we use one point light source for all scenes. The CONFERENCE was ray traced with a
reflective table, taking approximately 1/6 of the screen. For comparison we also list the OpenRT performance data with 4× 4
rays/packet and frustum culling from [WBS07].

the leaf that contains the origin. Combined with the deeper
entry nodes after a leaf exit (optimized ropes), the stackless
traversal algorithm saves up to 2/3 of the down traversal steps
in practice, compared to its recursive counterpart (see Ta-
ble 2). Furthermore, we can apply a similar trick for sec-
ondary rays – their starting node is simply the leaf where the
previous traversal terminated. Thus, we can start traversal
for secondary rays directly at a leaf as well.

Similar approaches have also been taken in [RSH05] and
later in [Ben06, WIK∗06, WBS07], by tracing frustums of
rays together and reducing the per ray cost by taking deci-
sions for the whole frustum. In particular, the entry point
search of [RSH05] is close to the above optimization, how-
ever it does not start at a leaf in the general case and it amor-
tizes the down traversal cost over a smaller number of rays.
Furthermore, most frustum methods work well for primary
and coherent rays only, whereas the stackless traversal works
quite well for most types of secondary rays.

For completeness, we also compare our algorithm to the
kd-restart algorithm [FS05]. Our experiments show (Table 2)
that the single ray traversal with entry node optimizations
saves up to 5/6 of all down traversal steps compared to
kd-restart. Furthermore, the down traversal of kd-restart/kd-
backtrack is more expensive as both algorithms need to in-
tersect the ray with the split plane, in contrast to a simple
point location query, performed by our stackless traversal
algorithm.

5.2.1. Packet Traversal

Compared to single ray traversal, packets perform more
traversal steps (Table 2). On the other hand, packet traver-
sal is characterized by very coherent memory access and by
coherent branch decisions, thus outperforming single rays
on the GPU for most scenes (Table 3). Its main disadvantage
when implemented on a GPU becomes the large packet size,
dictated by the chunk size of the GPU.

On the CPU, packet traversal is slower than single ray
traversal. One explanation is the relatively large size of the
CPU cache and the implicit read-ahead. Thus, a coherent

memory access pattern is not as important on the GPU, as
long as close rays traverse close nodes. Also, using SIMD
for the packets cannot improve performance a lot, since
the single ray implementation already uses SIMD instruc-
tions where appropriate. Thus, the introduced overhead of a
packet becomes an issue.

5.3. Absolute Performance

The absolute performance of our GPU ray tracer in frames
per second is summarized in Table 3. We achieve a peak per-
formance of almost 17M rays/s for the non-trivial CONFER-
ENCE scene. If we compare the same stackless traversal al-
gorithms on the CPU and the GPU we clearly show that the
GPU would outperform even a four core CPU.

CPU based ray tracers can achieve higher performance by
using more advanced traversal methods, most notably frus-
tum culling techniques [RSH05, Ben06, WIK∗06, WBS07].
However, these frustum methods are usually not very flexi-
ble, e.g. all rays of a packet have to share a common origin
or their directions need to have the same sign. Furthermore,
even if secondary rays are supported, tracing them with frus-
tums will be much slower than for primary rays [BEL∗07].

The GPU ray tracer of [HSHH07] achieves 15.2M pri-
mary rays/s in the CONFERENCE scene. Using the same
view our GPU implementation traces 22M rays/s. However,
note that the difference in speed might be due to the newer
hardware we have used.

6. Conclusions and Future Work

In this paper we showed that a stackless traversal algorithm
for kd-trees with ropes has several advantages compared
to other traversal algorithms: It is simple and reduces the
number traversal steps. But more importantly, avoiding the
traversal stack leads to a very GPU-friendly implementation.
Furthermore, we presented a novel, stackless packet traver-
sal algorithm that boosts the GPU ray tracing performance to
a level where the GPU can actually outperform CPU-based
ray tracers.

© The Eurographics Association and Blackwell Publishing 2007.

S. Popov, J. Günther, H.-P. Seidel, and P. Slusallek / Stackless KD-Tree Traversal for High Performance GPU Ray Tracing

One interesting direction for future work is the develop-
ment of a stackless traversal algorithm that exploits ideas
of frustum test and interval arithmetic to amortize traversal
decisions over many rays and thus to further improve perfor-
mance.

Although we believe a performance of over 16M rays/s
to be already quite impressive for the CONFERENCE scene,
we expected much higher performance: The G80 with its
128 scalar arithmetic units running at 1.3GHz should de-
liver over 160GFlops, meaning that tracing one ray costs
about 10,000 cycles. We suspect the main bottleneck to be
the large number of registers in the compiled code, which
limits the occupancy of the GPU to less than 33%. Unfor-
tunately, although the program requires much less registers,
the CUDA compiler is not yet mature enough and cannot aid
in reducing their count. An option would be to rewrite the
whole CUDA code in PTX intermediate assembly.

References

[BEL∗07] BOULOS S., EDWARDS D., LACEWELL J. D.,
KNISS J., KAUTZ J., SHIRLEY P., WALD I.: Packet-
based whitted and distribution ray tracing. In Proceedings
of Graphics Interface 2007 (May 2007). 8

[Ben06] BENTHIN C.: Realtime Ray Tracing on Cur-
rent CPU Architectures. PhD thesis, Saarland University,
2006. 2, 8

[CHCH06] CARR N. A., HOBEROCK J., CRANE K.,
HART J. C.: Fast GPU ray tracing of dynamic meshes
using geometry images. In Proceedings of Graphics In-
terface (2006), A.K. Peters. 2

[CHH02] CARR N. A., HALL J. D., HART J. C.: The ray
engine. In Proceedings of Graphics Hardware (2002),
Eurographics Association, pp. 37–46. 2

[Chr05] CHRISTEN M.: Ray Tracing auf GPU. Master’s
thesis, Fachhochschule beider Basel, 2005. 2

[EVG04] ERNST M., VOGELGSANG C., GREINER G.:
Stack implementation on programmable graphics hard-
ware. In Proceedings of the Vision, Modeling, and Visu-
alization Conference 2004 (VMV 2004) (2004), Girod B.,
Magnor M. A., Seidel H.-P., (Eds.), Aka GmbH, pp. 255–
262. 2

[FGD∗06] FRIEDRICH H., GÜNTHER J., DIETRICH A.,
SCHERBAUM M., SEIDEL H.-P., SLUSALLEK P.: Ex-
ploring the use of ray tracing for future games. In sand-
box ’06: Proceedings of the 2006 ACM SIGGRAPH Sym-
posium on Videogames (2006), ACM Press, pp. 41–50. 2

[FS05] FOLEY T., SUGERMAN J.: KD-tree acceleration
structures for a GPU raytracer. In HWWS ’05 Proceedings
(2005), ACM Press, pp. 15–22. 2, 8

[FW78] FORTUNE S., WYLLIE J.: Parallelism in random
access machines. In STOC ’78: Proceedings of the tenth
annual ACM symposium on Theory of computing (1978),
ACM Press, pp. 114–118. 6

[Hav97] HAVRAN V.: Cache sensitive representation for
the BSP tree. In Compugraphics’97 (Dec. 1997), GRASP
– Graphics Science Promotions & Publications, pp. 369–
376. 6

[Hav01] HAVRAN V.: Heuristic Ray Shooting Algorithms.
PhD thesis, Faculty of Electrical Engineering, Czech
Technical University in Prague, 2001. 2

[HBŽ98] HAVRAN V., BITTNER J., ŽÁRA J.: Ray tracing
with rope trees. In 14th Spring Conference on Computer
Graphics (1998), Szirmay-Kalos L., (Ed.), pp. 130–140.
2, 3

[HKBŽ97] HAVRAN V., KOPAL T., BITTNER J., ŽÁRA

J.: Fast robust BSP tree traversal algorithm for ray tracing.
Journal of Graphics Tools 2, 4 (Dec. 1997), 15–23. 2

[Hou06] HOUSTON M.: Performance analysis and
architecture insights. In SUPERCOMPUTING
2006 Tutorial on GPGPU, Course Notes. 2006.
http://www.gpgpu.org/sc2006/slides/
10.houston-understanding.pdf. 4

[HSHH07] HORN D. R., SUGERMAN J., HOUSTON M.,
HANRAHAN P.: Interactive k-d tree GPU raytracing. In
I3D ’07: Proceedings of the 2007 symposium on Interac-
tive 3D graphics and games (2007), ACM Press, pp. 167–
174. 2, 8

[Kap85] KAPLAN M. R.: Space-tracing: A constant time
ray-tracer. Computer Graphics 19, 3 (July 1985), 149–
158. (Proceedings of SIGGRAPH 85 Tutorial on Ray
Tracing). 2

[Kar04] KARLSSON F.: Ray tracing fully implemented
on programmable graphics hardware. Master’s thesis,
Chalmers University of Technology, 2004. 2

[MB89] MACDONALD J. D., BOOTH K. S.: Heuristics
for ray tracing using space subdivision. In Graphics In-
terface Proceedings 1989 (June 1989), A.K. Peters, Ltd,
pp. 152–163. 2, 3

[NVI] NVIDIA: The CUDA homepage. http://
developer.nvidia.com/cuda. 2, 6

[PBMH02] PURCELL T. J., BUCK I., MARK W. R.,
HANRAHAN P.: Ray tracing on programmable graphics
hardware. ACM Transactions on Graphics (Proceedings
of ACM SIGGRAPH) 21, 3 (2002), 703–712. 2

[PSS∗06] PABST H.-F., SPRINGER J. P., SCHOLLMEYER

A., LENHARDT R., LESSIG C., FROEHLICH B.: Ray
casting of trimmed NURBS surfaces on the GPU. In Pro-
ceedings of the 2006 IEEE Symposium on Interactive Ray
Tracing (Sept. 2006), pp. 151–160. 2

[Pur04] PURCELL T. J.: Ray Tracing on a Stream Proces-
sor. PhD thesis, Stanford University, 2004. 2

[Res06] RESHETOV A.: Omnidirectional ray tracing
traversal algorithm for kd-trees. In Proceedings of the
2006 IEEE Symposium on Interactive Ray Tracing (Sept.
2006), pp. 57–60. 4

© The Eurographics Association and Blackwell Publishing 2007.

http://www.gpgpu.org/sc2006/slides/10.houston-understanding.pdf
http://www.gpgpu.org/sc2006/slides/10.houston-understanding.pdf
http://developer.nvidia.com/cuda
http://developer.nvidia.com/cuda

S. Popov, J. Günther, H.-P. Seidel, and P. Slusallek / Stackless KD-Tree Traversal for High Performance GPU Ray Tracing

[RSH05] RESHETOV A., SOUPIKOV A., HURLEY J.:
Multi-level ray tracing algorithm. ACM Transaction of
Graphics 24, 3 (2005), 1176–1185. (Proceedings of ACM
SIGGRAPH). 2, 8

[Sam84] SAMET H.: The quadtree and related hierarchical
data structures. ACM Computing Surveys 16, 2 (1984),
187–260. 3

[Sam89] SAMET H.: Implementing ray tracing with oc-
trees and neighbor finding. Computers and Graphics 13,
4 (1989), 445–60. 3

[SGS06] STOLL C., GUMHOLD S., SEIDEL H.-P.: Incre-
mental raycasting of piecewise quadratic surfaces on the
GPU. In Proceedings of the 2006 IEEE Symposium on
Interactive Ray Tracing (Sept. 2006), pp. 141–150. 2

[TS05] THRANE N., SIMONSEN L. O.: A Comparison
of Acceleration Structures for GPU Assisted Ray Tracing.
Master’s thesis, University of Aarhus, 2005. 2

[Wal04] WALD I.: Realtime Ray Tracing and Interac-
tive Global Illumination. PhD thesis, Saarland University,
2004. 2, 7

[WBS07] WALD I., BOULOS S., SHIRLEY P.: Ray trac-
ing deformable scenes using dynamic bounding volume
hierarchies. 6. 8

[WIK∗06] WALD I., IZE T., KENSLER A., KNOLL A.,
PARKER S. G.: Ray tracing animated scenes using coher-
ent grid traversal. ACM Transactions on Graphics 25, 3
(2006), 485–493. (Proceedings of ACM SIGGRAPH). 8

[WMS06] WOOP S., MARMITT G., SLUSALLEK P.: B-
KD trees for hardware accelerated ray tracing of dynamic
scenes. In Proceedings of Graphics Hardware (2006). 2

[WSBW01] WALD I., SLUSALLEK P., BENTHIN C.,
WAGNER M.: Interactive rendering with coherent ray
tracing. Computer Graphics Forum 20, 3 (2001), 153–
164. (Proceedings of Eurographics). 4

[WSS05] WOOP S., SCHMITTLER J., SLUSALLEK P.:
RPU: A programmable ray processing unit for realtime
ray tracing. ACM Transactions on Graphics (Proceedings
of SIGGRAPH 2005) 24, 3 (2005), 434–444. 2

Appendix A: Optimality of the Stackless Packet Traversal
Algorithm

We define a stackless packet traversal algorithm to be opti-
mal if it is correct and if – for a packet of rays with direction
vectors in the same octant – it visits each node of the kd-tree
at most once. Thus it has to process all rays that intersect a
node together. Our algorithm is optimal in this respect. To
prove it, we will first prove the following lemma:

Lemma 1 Let T be a subtree and let A be the set of active
rays with which we enter T during some down traversal step.
Then, the packet traversal algorithm will only visit nodes
from T , until all rays of A exit T or terminate.

Proof First we look at the way we store the tree in memory:
For a node N we require that its subtree is stored in the order
|NL|NR|subtree(NL)|subtree(NR)|, with NL and NR being the
children of N. Thus, in the down traversal step, the address
of Ntraversed can only increase. Because we started the down
traversal with the node with maximum address, it follows
that all rays R /∈ A will be at nodes with addresses smaller
than the one of Troot . Let us look now at a leaf L inside T .
For a rope of a face of L there are 3 possibilities: It points
to a node NI within T , it points to a node NO outside of T ,
or it points to nil. NI has an address larger than the address
of the root of T and if we choose it in an exit step, we will
stay in T . NO on the other hand has an address smaller than
the address of the root of T . This is a consequence of the
way we construct the ropes: The sibling of NO is actually
an ancestor of the root of T . Thus, the algorithm can choose
NO for Ntraversed after a leaf exit step only if there are no
rays waiting at nodes inside T (Ncurrent /∈ T). However, this
would mean that all rays of A have exited T . In case the
algorithm chooses nil after exiting a leaf, the whole traversal
stops. Thus, the node we choose at an exit step will always
be inside T if some rays of A are still inside T . Which proves
the lemma.

Proof of optimality Let R be the root of the tree. Because we
assume that the rays have the same direction along the split
axis of R, they will all traverse R’s children in the same order
and we can classify the children as near and far. According to
lemma 1, the rays that intersect the near child will traverse
it completely before any ray starts traversing the far child.
Thus, the algorithm cannot visit the near child twice, as the
entry points of all rays move toward the far child. The same
holds for the far child – once all rays finish traversing the far
child, no ray will be in the tree anymore. We can apply the
reasoning recursively by taking R to be the root of the left
respectively right subtree of the root and by limiting the set
of rays to only those that intersect the new R.

© The Eurographics Association and Blackwell Publishing 2007.

	1 Introduction
	2 Previous Work
	2.1 Ray Tracing on GPUs
	2.2 KD-Tree Traversal on the GPU

	3 Efficient Stackless KD-Tree Traversal
	3.1 Single Ray Stackless KD-Tree Traversal
	3.2 Stackless Traversal for SIMD Packets of Rays

	4 GPU Implementation
	5 Results and Discussion
	5.1 Memory Requirements
	5.2 Traversal Steps
	5.3 Absolute Performance

	6 Conclusions and Future Work
	References
	A Optimality of the Stackless Packet Traversal Algorithm

